Random variation and systematic error caused by various preanalytical variables, estimated by linear mixed-effects models
نویسندگان
چکیده
منابع مشابه
The systematic error caused by random errors through data reduction
During the evaluation of the continuous measurement signal of analytical instruments by a digital computer, the signal is sampled periodically, and the analytical information [1] is computed from this sequence of discrete values representing the signal by the procedure called data reduction [2]. For example, retention data, peak heights and/or peak areas are produced from the raw discretized si...
متن کاملRandom effects selection in linear mixed models.
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard nor...
متن کاملRandom Effects in Generalized Linear Mixed Models
In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper p...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملVariable Selection in Linear Mixed Effects Models By
This paper is concerned with the selection and estimation of fixed and random effects in linear mixed effects models. We propose a class of nonconcave penalized profile likelihood methods for selecting and estimating important fixed effects. To overcome the difficulty of unknown covariance matrix of random effects, we propose to use a proxy matrix in the penalized profile likelihood. We establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Clinica Chimica Acta
سال: 2013
ISSN: 0009-8981
DOI: 10.1016/j.cca.2012.10.045